If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-8=3
We move all terms to the left:
3x^2-8-(3)=0
We add all the numbers together, and all the variables
3x^2-11=0
a = 3; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·3·(-11)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*3}=\frac{0-2\sqrt{33}}{6} =-\frac{2\sqrt{33}}{6} =-\frac{\sqrt{33}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*3}=\frac{0+2\sqrt{33}}{6} =\frac{2\sqrt{33}}{6} =\frac{\sqrt{33}}{3} $
| 2x/5+10=x/4-5 | | y=4(1.05)^3 | | 6/8+4n/8=4 | | 4^x+2^1-2x=50 | | 16.5/2x-2x=7.5/4x-4x | | 1/2f-13=28 | | 1/v+3=-5/v-3 | | 3w−5=10 | | 5w+8=68 | | m/2+-5=-6 | | 4*x^2=-128 | | 9(x+5=-9 | | 1/2(10-8x)=5 | | 18-13x=39 | | 10−2r=6 | | 6v+2=-19 | | 58/4=21/n | | 2g(2)=g(9) | | -14m−18=-12m | | -10-8x=11-7x | | 4x=3=47 | | 2x-5=10-8x)=5 | | y=0.25(1.4)^3 | | -61=6u-1 | | 11x+10=11x+4 | | 8x+40=9 | | 12.50+0.40e=14.75+0.25 | | $12.50+$0.40e=$14.75+$0.25 | | $12.50+$0.40e=$14.75+$0.25e | | 4x−2x=10 | | 15(x+2)+5(13x+1)=9 | | x=4+29 |